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Flow in the exit of open pipes during acoustic resonance 

By J. H. M. DISSELHORST A N D  L. VAN WIJNGAARDEN 
Twente University of Technology, 

Enschede, The Netherlands 
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The flow near the mouth of an open tube is examined, experimentally and theoretically, 
under conditions in which resonant acoustic waves are excited in the tube at  the other 
end. If the edge of the tube is round, separation does not occur at high Strouhal 
numbers, which enables us to verify theoretical predictions for dissipation in the 
boundary layer and for acoustic radiation. Observation with the aid of schlieren 
pictures shows that in the case of a sharp edge vortices are formed during inflow. 
The vortices are shed from the pipe during outflow. Based on these observations a 
mathematical model is developed for the generation and shedding of vorticity. The 
main result of the analysis is a boundary condition for the pressure in the wave, to 
be applied near the mouth. The pressure amplitudes in the acoustic wave measured 
under resonance are compared with theoretical predictions made with the aid of the 
boundary condition obtained in the paper. 

1. Introduction 
The subject of this paper is the investigation of flow phenomena in open tubes when 

acoustic waves are excited in these tubes near the lowest resonance frequency. In a 
linear non-dissipative theory, such waves reach infinite amplitudes of velocity and 
pressure. When viscous and thermal dissipation in the main wave and in the boundary 
layers along the wall are taken into account, it appears that these mechanisms keep 
pressures and velocities as low as observed in practice, only for very small amplitudes 
of excitation. Hence nonlinear effects have to be included for larger excitation 
amplitudes. With standing waves in closed tubes this has been done satisfactorily in 
the theories by Chu & Ying (1963) and Chester (1964) which both, along different lines, 
describe the formation of shock waves near resonance frequencies. If the excitation, 
a piston for example, has a velocity of order 6 and the amplitude of the resulting 
standing wave is of order E, the work done by the piston is of order 6~ whereas the 
dissipation in the shock wave is of order €3. From this it follows that E - 64. This 
conclusion, as well as other more detailed ones from the aforementioned theories, is 
well confirmed by experiments, like those by Cruikshank (1972). 

Nonlinearity has also been considered for propagation in open tubes. It appears 
that nonlinearity in the wave becomes effective only when velocity and pressure 
disturbances are taken into account to the third order in E. With closed tubes, this 
happens already in the second-order theory. The reason for this is essentially that a 
compression wave is reflected against an open end as an expansion wave. Nonlinear 
steepening, with an associated increase in wave velocity, gained during one traverse 

0022-1 120/80/4491-1580 $02.00 0 1980 Cambridge University Press 



294 J .  H .  M .  Disselhorst and L. van Wijngaarden 

FIQURE 1. Sink-like inflow (a) and jet-like outflow ( b )  for open pipe. The boundary conditions 
(1.1) (Van Wijngaarden 1968) are based on this flow behaviour. 

of the tube is therefore almost lost during the next. Against a closed end a compression 
wave is reflected as a compression wave again. The outcome of third-order theories 
(Seymour & Mortelll973; Jimenez 1973) is that 6 N 84, a result which is not confirmed 
by the bulk of experimental results such as those of Sturtevant (1974). For sharp- 
edged open pipes Van Wijngaarden (1968) drew attention to jet formation at the 
mouth during outflow and boundary-layer separation during inflow as possible 
dissipative mechanisms. Based on the flow behaviour sketched in figure 1, he proposed 
as the condition for the pressure disturbance p -p ,  a t  the mouth of the pipe 

p - p ,  = 0 a t  outflow, (1.1) 

p - p ,  = c--p0u2 au a t  inflow, 
at 

where po and p ,  are the ambient atmospheric density and pressure, u denotes the 
velocity, t denotes time and c is a constant. A theory along the lines of Chu & Ying 
(1963) has been given in Van Wijngaarden (I  968) in which (1.1) is imposed at  the 
open end of the tube. In retrospect this theory could have been much simpler, as 
pointed out later by Seymour & Mortell (1973), when it was realized that nonlinear 
effects in the main wave appear only in third-order theory. In  the case when boundary- 
layer separation dominates we have to deal with a second-order problem. It is known 
from experiments (Lettau 1939; Sturtevant 1974) that with very steep pressure 
signals shock waves also appear in the open tube case, showing that eventually non- 
linear distortion plays an important part. Yet the situation treated here, where the 
boundary condition at  the open end determines the flow, is far from clear. In Van 
Wijngaarden (1 968) viscosity and thermal conduction are neglected. 

Further experiments reported in Van Wijngaarden & Wormgoor (1974) show that 
the picture in figure 1 is too simple. It would do if the flow were quasi-steady. In 
general, however, vortices are generated during inflow and expelled during outflow. 
This unsteady process affects the standing wave in the tube significantly. We decided 
therefore to make more detailed observations of the flow behaviour near the mouth 
and to attempt to explain these observations quantitatively. 

To assess the role of viscous and thermal dissipation in boundary layers along the 
wall we also considered tubes with round edges far which, at least a t  low amplitudes, 
there is no boundary-layer separation at inflow or outflow. This type of standing wave, 
entirely determined by dissipation and by acoustic radiation from the end, is discussed 
in 5 2. In 5 3 the experimental set-up ie briefly described. In 5 4 results of the experi- 
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ments are given in particular for aspects which concern vortex generation and vortex 
trajectories near the open end. A mathematical model which is based on these obser- 
vations is given in J 5. Since for practical applications the main interest is in formulating 
a boundary condition a t  the open end for the standing wave, the model is constructed 
so as to enable the calculation of the difference between the pressure in the wave near 
the mouth and the ambient pressure. In $ 6  the numerical scheme is described, with 
the help of which the rolling up of vortex sheets coming from the sharp edges is 
calculated numerically. Numerical results for the trajectories of vortices and for 
pressures near the mouth of an open pipe are given in J 7 .  

From the numerical results a boundary condition for the pressure at the open end 
follows. A refinement is that this should be applied not at the end but at a section at 
0.61R (R being the tube’s radius) outward in the axial direction. This is implied by the 
results of Levine & Schwinger (1948) who found that radiation of sound from an 
unflanged pipe can be allowed for by lengthening the pipe by an amount 0-61R (at 
large wavelengths) in the calculation, thereby imposing ambient pressure at  this 
(fictitious) open end. In the new boundary condition the time dependence of the 
pressure p -po  is the same as that of the velocity u, and in amplitude p -p,  N ut, a 
consequence of potential theory. The work done by the gas leaving the pipe on the 
ambient atmosphere follows from the proposed boundary condition. The mean energy 
balance of the gas in the pipe states that this and the power dissipated by heat 
conduction and viscosity together with the radiated acoustic power balance the work 
done on the gas by the driving piston. The latter can easily be measured and in this 
way a verification of the proposed boundary condition is possible. 

The comparison between predicted and measured results is made a t  the end of Q 7 
in terms of the three dimensionless parameters by which the physical mechanisms can 
be characterized. They are listed here. The angular frequency Q, tube radius R and 
viscosity v of the medium, in our case air, define a dimensionless number representing 
the ratio between the thickness (v /Q)* of the boundary layer at  the wall and the tube 
radius R. It is denoted here by the abbreviation Sh, standing for ‘shear’, 

Sh = (v /QR~)*.  (1.2) 

Then there is the ratio between local acceleration and convective acceleration. A 
measure for this is the Strouhal number St. If the maximum velocity during a cycle 
is a, the pertinent Strouhal number here is 

St = QR/i2. (1.3) 

For large frequencies and small velocity amplitudes St is large, and vice versa. Finally, 
acoustic radiation is characterized by the ratio between tube radius and wavelength. 
With velocity of sound a, in the ambient atmosphere, this ratio, denoted here by K ,  is 

K = QR/a,. (1.4) 

K = nR/2L. (1.5) 

A t  the resonance frequencies at  which our experiments are done 

In our experiments K is always a small number varying between 0.01 and 0-08. The 
parameters Sh, St and K are measures of the principal mechanisms, viscous action, 
nonlinearity and radiation, which we shall consider. 
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2. Waves in tubes with a round edge 
Standing waves in tubes with a round edge are primarily investigated here because 

no boundary-layer separation occurs, at least a t  low amplitudes of the excitation. 
The external work on the gas in the tube is partly dissipated in the boundary layer 
along the wall and partly radiated from the open end as sound. These can both be 
predicted accuiately with, for the dissipation, the restriction of laminar flow in the 
boundary layer. Merkli (1973), in his extensive experimental study of a,coustic oscilla- 
tions in tubes, finds that turbulent flow in the boundary layer occurs when a/(fiv)t 
exceeds a value of 350-700. In  terms of the dimensionless parameters used here 
this means that laminar flow in the boundary layer may be assumed as long as 
(StSh)- l  < 500, say, a condition which is satisfied in most of the experiments 
discussed later in this paper. A theory of boundary layers in oscillating flows has 
been given in Rayleigh (1945). Temkin (196s) finds for the dissipation P, in an 
oscillating pipe flow, with Prandtl number Pr, ratio of specific heats y, 

P, = &poa2(frQ~~)~nR2(1 + (7- 1)lPd) LIR. (2.1) 

This comprises the power dissipated by viscosity and by heat conduction. The sub- 
script w indicates wall friction. An additional, though small, contribution occurs in 
the (smooth) flow around the edge. This has been calculated elsewhere (Disselhorst & 
Van Wijngaarden 1979) and is omitted here. We cast (2.1) in a slightly different form. 
Since we are dealing with resonance conditions we may eliminate L by using the 
relation, valid a t  the lowest resonance frequency, 

L = na0/2fi. (2.2) 

Further, in the linear acoustic approximation there exists between a and the maximum 
pressure at  the driving piston j&, the relation 

i3p -Po = Poaoa. (2.3) 

In an energy balance consisting of second-order terms in which we shall use (2.1), 
we may use (2.3). Then we find, Sh being defined in (1.2), 

The radiated acoustic power could be obtained from the results in the classic paper 
by Levine & Schwinger (194S), dealing with sound radiation from an unflanged pipe. 
For small values of K ,  defined by ( 1  -4) and (1 4, the radiated power can more easily 
be found as follows. The mass flow from the mouth is 

m = ponR2.iieint. 

In the far field the mouth can be considered as the site of an acoustic monopole with 
strength m. Using the expression (see, for example, Lighthill 1978, p. 22) 

P = m2/4np0a, 

for the power radiated from a monopole, and adjusting for the proximity of a rigid 
wall a t  distance d from the centre of the mouth using the factor 

sin ndlL 
= 1 +  a t  resonance, 

sin 2KdIR 
2KdIR ndIL 

K =  1-k 
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we find for the radiated acoustic power Pac, averaged over a cycle, 

K2nR2(j3, -p0)' 
Pac = K 

*poao 

In  resonant conditions the pressure a t  the piston 

Pp -Po = ( r i p  -Po) eiRt (2.7) 

is in phaset with the velocity of the piston when this is harmonic in time. We represent 
the velocity of the piston here with the real part of QSeiRt. Then the work done by the 
piston over a period of the motion of the piston is 

P, = -Po)  nR2, (2 .8)  

yielding the energy balance 

P, = Pw + Pa,. 

The resulting pressure amplitude of the wave motion, a t  given Q and 6, can be 
expressed in terms of the dimensionless quantity Q, defined as 

(2.10) 

Using this definition and the expressions (2.4)) (2.6) and (2.8), we obtain from the 
energy balance (2.9) 

(2.11) 

Since we may use the relation (2.3) and the definition (1.3) of the Strouhal number to 
write Q as 

Q = R/St  S,  (2.12) 

an alternative expression for (2.11) is 

st= (li) S -1 ( w ( 1 + 9 s h + 5 3 .  n 
(2.13) 

The relation (2.11) may be expected to hold for high values of St; more precisely, 
when no boundary-layer separation occurs. 

At large values of 2, corresponding to low values of St,  the boundary layer separates 
from the wall a t  outflow. In  the limit of very low St the flow near the exit will look like 
that skebched in figure 2. During inflow, when owing to the round edge no separation 
takes phce, Bernoulli's theorem gives in the exit 

p - p  0 - - -1 2POU2* (2.14) 

During outflow jet formation occurs and the pressure approximately equals the 
ambient pressure 

P = Po- (2.15) 

t Of course there is a small phase lag due to viscosity and thermal conduction. This leads for 
small enough Sh to a negligible contribution to Q in (2.11). 
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FIUURE 2. Quasi-steady flow in the exit of a pipe with a round edge. With inflow (a) Bernoulli’s 
law (2.14) holds; at outflow (b)  the flow is jet-like due to boundary-layer separation. 

With sharp edges the conditions (1.1) reduce for Xt --f 0 to 

p - p o  = -pou2 a t  inflow, (2.16) 

p = p ,  at outflow. 

The difference between the right-hand sides of (2.14) and (2.16) is associated with 
separation a t  inflow with the sharp edge and smooth flow with the round edge. The 
result of calculations of the pressure in a standing resonant wave subject to (2.16) 
at the exit is, as given in Van Wijngaarden (1968), 

-PO - n6 * Isin fitldsgn (sin fit). YPO - (z) (2.17) 

For a harmonic p p  -po we defined &, -po  as the maximum value. For a function like 
the above which comprises higher harmonics as well, we define P p  -po as 24 times the 
root mean square of p p  -po (which is, for a purely harmonic function, the maximum 
value). This gives for (2.17) 

The corresponding value of Q is, using (2.10), found to be 

Q = ; ( B )  4 L +  . 

(2.18) 

(2.19) 

Likewise, in the limit of small values of St for a round-edged tube, where (2.14) holds, 
we obtain 

Q = ~ ( B )  4 4 2  L 4 . 
(2.20) 

Experiments to be described in the next section were carried out with tubes both 
with round and with sharp edges. At resonance the pressure at  the piston was measured 
and the experimentally obtained values of Q, defined in (2.10), plotted for a number 
of values of L against 6/R. The results are shown in figure 3. We discuss first the results 
for pipes with a round edge. For each length L, K and Xh are constant when 6 varies 
because they are determined by the resonance frequency Q. For increasing 6, St 
decreases because fi increases. The broken line on the left-hand side indicates, for 
each L, the value of Q predicted by (2.11) whereas that on the right-hand side indicates 
the relation (2.20) predicted by the theory for low St. The measurements clearly show 
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FIGURE 3. The quantity Q as a function of the dimensionless piston amplitude 6 / R  for different 
lengths of the tube. (a) L = 1.1 m; ( b )  L = 1.8 m; (c) L = 3.3 m; ( d )  L = 6.3 m. Measurements: 
0, sharp edge; 0 ,  round edge. Theory: x x x , sharp edge, equation (2.19) ; ---, round edge, 
equations (2.11) and (2.20). 

two regions. First, for SIR smaller than 10-2 Q is independent of St and very close 
to the theoretical value in (2.11) based upon boundary-layer dissipation and sound 
radiation. For 6/R larger than about 10-2,  Q decreases with 6 in a way which is 
for larger 6 (small 8t) in good agreement with (2.20). From the agreement between 
theory and experiment at low values of 6/R, we may conclude that losses due to 
boundary-layer dissipation and acoustic radiation are accurately described by the 
relation for P,, and PaC in (2.4) and (2.6), whence we shall use these expressions with 
sharp edges to separate radiation and boundary -layer dissipation from energy losses 
of other nature. 

For tubes with a sharp edge the results in figure 3 show that there are, in the range 
of experimental parameters, no S values where Q is independent of S/R. A t  low 
values of 6/R (high 8t) the experimental results fit neither with (2.11) (the measure- 
ments suggest, however, that for very small SIR ,  less than lo-* say, end losses become 
negligible) nor with (2.19). A t  large 6 / R  (low 8t) a tendency to approach the asymptotic 

t More precisely, Q does not depend on 6 for St larger than about 1, see figure 20. For Q N lo* 
this amounts to [cf. (2.1.2)] SIR N 
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FIGURE 4. The dimensions of the sections of the open tube: (a )  steel section; 
(b)  open end with sharp edge; (c )  open end with round edge. 

Compressed air 
I 

FIGURE 5. Construction of the piston sealing. 

result (2.19) can be observed, confirming the experimental results in Van Wijngaarden 
(1  968) which were for relatively large 6/R.  

Accordingly, the aim of this paper is primarily to  investigate in more detail the 
behaviour of the flow near the exit in sharp-edged pipes for low values of 6 / R  and 
correspondingly large Strouhal number. 

3. Experimental set-up 
In  this section we describe how the experiments were carried out. We used a tube 

consisting of steel sections of 1.5 m length with an internal diameter of 0.11 m, as 
shown in figure 4. The end sections, both with sharp and with round edges, were made 
of Perspex. The radius of curvature of the smooth edge is 0.01 m. The oscillations in 
the pipes were excited by a piston a t  the other end. The problem of making a good 
sealing between the piston and the pipe wall was solved as shown in figure 5 .  The 
fairly large clearance? is filled up with a kind of tyre which can be pressurized to an 
absolute pressure of about 1.5 bar. This tyre, rubber with a thickness of 0.007 m, 
is glued to the piston, as indicated in figure 5, and clamped to  the end of the pipe. 
The leakage through this sealing is negligible. Two other advantages of this construc- 
tion are that there is only a small friction force between tube and piston and that the 
construction poses no severe lining problems with the excitation, an MB electro- 

t Radial modes generated at the piston as a result of this clearance are strongly attenuated 
because the cut-off frequency, of order a,/R, is much larger than the resonance frequency, given 
in (2.2). 
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dynamic shaker. With this device we could carry out experiments with piston ampli- 
tudes S as small as 10-5 m without distortion by friction. The amplitude of the piston 
was measured both with a Peekel inductive displacement inducer and with an accelero- 
meter built in the excitator. 

The pressure p p  a t  the piston was measured with a Bruel & Kjaer 9" microphone 
located a t  a distance of about 0.03 m from the piston. This distance is very small with 
respect to  the wavelength: the latter is four times the pipe length, which varies, see 
figure 3, between 1 and 6 metres. Moreover there is an antinode of the pressure a t  
the piston under resonance. The pressure a t  0.03 m from the piston therefore differs 
negligibly from the pressure a t  the piston. The pressure at the exit of the pipe was 
measured with the same type of microphone. Here a problem arises. In the most 
simple kind of linear theory the pressiire is zero a t  the open end. This however is not 
true, because due to radiation from the open end (Levine & Schwinger 1948) the first- 
order standing wave has a node not a t  the exit but a t  a distance 0.61 times the radius 
outside the pipe. So, when one measures the pressure right a t  the exit, this signal 
contains, apart from second-order quantities as in (2.14) and (2.16)) a first-order 
contribution. Bearing this in mind we acted as follows: with a microphone the pressure 
was measured a t  various locations inside the tube, indicated with distance x from the 
mouth. These measured results were Fourier analysed and the Fourier components 
were determined as a function of x. With help of these the pressure was extrapolated 
to  a value a t  x = O.61R. In  the calculation of the Fourier components the measure- 
ments made near the exit were weighted less heavily than those further inside the 
tube because of the inhomogeneity of the pressure across the pipe near the exit. The 
velocity can be obtained from the pressure by the relation 

au ap 
p o - + - = o  

at ax 

between pressure and velocity, which is valid up to the third order in u because the 
first-order aulax is zero a t  the mouth. 

Experimental analysis of flow behaviour near the edge. In  order to make the flow 
near the edge a t  the exit visible we connected to the circular tube a two-dimensional 
open end with the same area of cross-section. Visualization was accomplished with 
schlieren methods, the necessary density gradients being realized by slightly heating 
the upper of the two plates forming the two-dimensional channel. This set-up is shown 
in figure 6. Because of the heating the streak line originating from the edge can be 
made visible. For other streak lines thin hot wires may be used. Two versions of the 
schlieren method were used, illustrated in figures 7 and 8. In  both of these, each 
point I in the object plane is illuminated by a narrow beam coming from the light source 
S. The camera is focused on this object plane. This means that all rays from I come 
together at one point of the film F ,  even if the beam is refracted, as in I,, by some dis- 
turbance. In the first version, the conventional schlieren method, a knife edge E is 
placed in the image of the aperture A ,  figure 7. In  the second version there is instead 
a Wollaston prism W and two polarization filters G1 and G2. The Wollaston prism 
splits a ray into two slightly diverging components. This means that the light falling 
on a point I ' ,  see figure 8, stems from two different points Il and I2 in the object 
plane. One is polarized in the plane of the paper of figure 8, the other perpendicular to 
this. The filter GI polarizes the light over an angle with respect to the plane of the 
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 FIG^ 6. Experimental set-up for the flow visualization. 

FIQURE 7. Schematic diagram for conventional schlieren method. 

S 

FIGURE 8. Schematic diagram for schlieren method with Wollaston prism. 

paper and renders the two components behind the prism of equal strength. The filter 
G2 polarizes the two components in the same direction (perpendicular to G l ) ,  making 
interference possible. This interference depends on the relative phase shift of the two 
rays. In the absence of flow inhomogeneities this phase shift is determined by the 
location a t  which the rays pass the Wollaston prism. If the prism has a neutral position 
the interference is destructive for all wavelengths. By slight shifting of prism some 
background colour can be established, as shown in figure 13, which has been obtained 
in this way. An additional phase shift is established when the two rays pass through 
different densities in Il and I,. This additional phase shift results in a change of colour 
as shown in figure 13. This plate together with figure 12 obtained with the conventional 
schlieren method will be discussed in the next section, which deals with experimental 
resu Its, 
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4. Experimental results 
Experimental results obtained a t  resonance for the pressure a t  the piston were 

shown already in figure 3, in terms of the quantity Q defined by (2.10). For the deter- 
mination of the pressure near the exit, the pressures measured a t  various 1oca.tions x 
within the pipe were (in the way described in 3 3) extrapolated to the cross-section 
x = 0.61R outside the pipe; this because the first-order standing wave has a pressure 
node there so that second-order quantities like pou2 are not drowned in the first-order 
signal. Results of this are shown in figures 9-11. In  figures 9(a)-(f) ,  for Xt = 0.73 
and K = 0.026, the pressure is plotted as a function of time during one cycle a t  various 
locations x inside the tube. The pressure obtained by extrapolation for x = 0.61R is 
represented, together with the velocity, in figure 9(g).  There is clearly a significant 
difference between the pressure right a t  the exit, x = 0, and a t  x = 0.61R. Also there 
is, in the pressure a t  x = 0.61R, apart from a contribution from a third harmonic 
(for which we have no explanation), a tendency to variation like u2, as occurring in 
the boundary condition (2.16). A good agreement with (2.16) cannot be expected 
because the Strouhal number is not really small. Another set of measurements of this 
type is given in figures lO(a)-(c), this for K = 0.026 and St = 0.29. In  figures 10(a, b )  
the measured profiles are shown, in figure 1O(c) the extrapolation to x = 0.61R and 
the measured velocity. The same features as in the preceding figure can be observed. 

This kind of experiment was also carried out with pipes provided with a smooth 
edge. A result for K = 0-026 and St = 0.41 is shown in figures 11 (a)-(c).  The ‘Bernoulli 
term’, - &pou2, in (2.14) is clearly visible, although here also the Strouhal number is 
too large for the flow to be quasi-steady. The main conclusion to be drawn from these 
measurements is that, if the boundary condition a t  the open end is applied a t  x = 0.61R, 
then, in that boundary condition, only effects other than acoustic radiation need to be 
taken into account. 

Both qualitative and quantita.tive information about vortex formation near the 
edge, already observed by Van Wijngaarden & Wormgoor (1974), was obtained from 
the schlieren pictures. In  figure 12 (plate 1) is shown the rolling-up, during one cycle 
of the flow, of the vortex sheet leaving the edge. These pictures have been made in 
the two-dimensional end section described in 3 3. In  each picture the time a t  which 
it was taken is indicated as fraction of the period T of the motion. The velocity, 
measured with hot wires, is given with the help of arrows, the length of which is a 
measure for the magnitude of the velocity; the direction is as indicated by the arrows. 
The process of formation of the rolled-up vortex and the subsequent expulsion of 
this vorticity from the pipe can be followed in detail. The Strouhal number, based on 
the distance between the plates, is large, St = 8. 

Apart from the vortex formation several other interesting features of the flow are 
visible. Notice first the inhomogeneity of the velocity distribution a t  the exit. At 
t = 0.45T t8he flow near the edge is already directed outward, while nearer the centre- 
line air is still flowing in. On the other hand, at t = 0.96T air is leaving near the centre 
but already flowing in a t  the edge. Further, it is of interest to know whether or not 
a Kutta condition is satisfied by the flow a t  the edge. Detailed study of enlarged 
versions of the pictures shown in figure 12 have led us t o  the conclusion that stream- 
lines leave the edge smoothly in the sense that, a t  each instant, the streamline leaving 
the edge coincides with the tangent to  the edge. 
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FIGURE 9. The pressure near the open end of the tube, p - p ,  p being the average value over a 
period, as a function of time for the sharp edge. Measurements: (a) z = - 6R; (b) x = - 4 R ;  
(c) z = -3R;  ( d )  z = - 2 R ;  (e) z = - R ;  (f) z = 0. (9)  ~ = 0.61R: --, extrapolatedpressure; 
...... , velocity; ---, pressure calculated with (2.16). The pressure p - @  is in N m-2, the velocity 
in m s-l. 
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FIGURE 10. The pressure near the open end of the tube, p - p ,  p being the  average value over a 
period, as a function of time (sharp edge). Measurements: (a )  x = -3.6R; ( b )  r = -1.6R. 
(c) x = 0.6R: - , extrapolated pressure ; . . . . . . , velocity : - - - , pressure calculated from (2.16). 
The pressure p - j5 is in N m-*, the velocity in m s -I .  

The rolling-up process of the vortex sheet leaving the edge, is also very clearly 
visible in the pictures taken with help of the Wollaston prism. Figure 13 (plate 2 )  
shows it series of such pictures. From these and those shown in figure 12 it follows that 
a vortex sheet leaves the edge and subsequently rolls up during inflow quite near the 
edge. The displacement of the centre of the vorticity-containing region is small during 
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FIGURE 11. The pressure near the end of the tube, p - p ,  j j  being the average value over a period, 
for the round edge as a function of time. Measurements: (a) z = -3.4R; (b )  z = - 1.4R. 
(c) z = 0.6R: __ , extrapolated pressure ; * . . . . . , velocity; ---, pressure calculated from (2.14) 
applied both at  inflow and at outflow. The pressure p - jj is in N m-%, the velocity in m s-l. 
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FIGURE 14. The conformal transformation of a semi-infinite channel 
with two rolled-up vortices. ( a )  The z plane. ( b )  The 5 plane. 

inflow but becomes large during outflow. It can be anticipated that this process will 
have an important feedback on the amplitude of the standing wave in the tube. That 
is why we tried to develop a mathematical model of the vortex motion near the 
edge, on the basis of observations of which figures 12 and 13 are typical examples. 

5. Mathematical model for the flow near the edge 
We consider the two-dimensional flow near the edge as depicted in figure 14(a). 

The vorticity-containing region of the pipe has very small dimensions with respect 
to the wavelength and the flow in this region may be considered as incompressible. 
Viscosity is neglected, apart from its effect on boundary conditions (the Kutta 
condition). I n  the channel, as z + - co, is a uniform time-dependent flow with velocity 
u(t) which in our case will be specified later as .ii sin t .  From the edges, z = 0 and z = iB, 
vortex sheets develop and gradually roll up after the motion has been started. Once 
the location of the vortex sheets with their distribution of vorticity is known, the 
velocity and pressure a t  each point of the z plane can be calculated. Eventually our 
aim is to calculate the pressure difference, Apv say, between the wave in the tube as 
z + - co and the outside atmosphere, insofar as this difference is caused by the 
presence of the vortex sheets. To accomplish this we first map the z plane cut along 

y = o  ( - o o < x < O ) , )  

y = B  ( - c o < z < O ) , )  

on a 5 plane cut along the real axis from - co to 1, by 

z 1  - = -{ln(l-c)+[). 
B 277 
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The way in which this transformation maps the channel bounded by the lines given 
in ( 5 .  I )  on the g plane is indicated in figure 14 (b ) .  In particular the region deep down 
the channel, z -+ - 00, is mapped into 5 = 1 and hence the uniform flow in the x plane 
becomes a source at g = 1 in the g plane. The vortex sheets coming from the edges a t  
x = 0 and z = iB are mapped as vortex sheets coming from the origin in the 6 plane, 
in complex-conjugate positions. 

For the subsequent (numerical) calculation each vortex sheet is divided into a 
finite number of discrete vortices. Let w be the complex potential due to N vortices 
and their images and the source at  5 = 1. The trajectory of any individual vortex 
with circulation Pn is given by 

the bar denoting a complex conjugate. In  terms of C, (5.3) reads 

Given the initial position of the vortices their motion can be calculated with help of 
this relation. However, the total vorticity rtot is not a constant because vorticity 
is continuously generated at the edges. The rate a t  which vorticity is generated a t  
each of the edges z = 0, z = iB, is given by 

In this relation the subscripts + and - refer to the sides of the vortex sheet leaving 
the edge. The resulting potential w must satisfy the Kutta condition at  the edges. 
Because the transformation ( 5 . 2 )  is singular a t  these points, t'his means in the g plane 
that 

dw _ -  - 0  a t  c =  0. 
d c  

Because the problem of determining w and the geometry of the vortex sheets can 
not be solved analytically, recourse to numerical computation must be made for this 
and similar problems. For a survey of the various numerical methods used we refer to 
recent papers by Clements & Maul1 (1976) and Saffman & Baker (1979). Owing to the 
discretization of the vortex sheets, errors are introduced numerically which accumulate 
and eventually tend to destroy a coherent flow pattern. This tendency of the collection 
of discrete vortices to form together a chaotic flow pattern becomes stronger when 
the number of vortices is increased. However, limiting the number of line vortices, 
we succeeded in calculating the pressure difference Ap0 as a function of time in the 
case of a harmonic motion Qsint in the tube for t > 0. Details of this calculation are 
given in the next section. 

6. Numerical calculation of the motion of the vortex sheet 
Each of the vortex sheets is represented by N discrete vortices of circulation 

r,, n = 1, . . . , N .  In the cplane, the vortices belonging to the sheet coming from z = iB 
are situated a t  5 = <*,; those belonging to the sheet coming from 5 = 0 are a t  y = cn. 
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FIGURE 15. The mapping of a vortex sheet with a parabolic shape 
in the 5 plane (a)  ; ( b )  the z plane. 

The first vortex, with circulation PI, is distributed along a small vortex sheet, the 
shape of which is chosen in the C plane as 

This parabolic shape has been chosen because, upon transformation to the z plane, 
see figure 15, i t  resembles quite closely the shape of the beginning of the vortex sheet 
observed in the experiments as shown for example in figure 13. This representation 
of the first vortex by a sheet element with a continuous vorticity distribution, y say, 
enables us to apply the relation (5 .5 )  for vortex generation in a convenient way. In 
it first approximation the vorticity is constant along the sheet element in the physical 
plane. Since it follows from (5.2) that near 5 = 0 we have dz/d< = - CB/2n+O(t[2), 
the y distribution is linear in the 5 plane, 

d r  d r d z  
y = - = -- = CC+O(C2), 

dc dzdC 

c being a constant. Assuming the curvature of the sheet element to be small, 

62 4 7 2 ,  
we can write 

H being the height (see figure 15) of the element. 
In the 5 plane the resulting potential is due to a source of strength uB, when u is 

the velocity far inside the pipe, the N -  1 discrete vortices with strength rn, their 
images with strength - r, and finally the small vortex sheets near < = 0. The resulting 
complex velocity is, with use of (5.2) and (6.4), found to be given by 

The Kutt,a condition (5.6) requires that dwldz  be finite a t  5 = 0. Evaluating the 
quantity i n  square brackets for 5 + 0 gives, using the approximation (6.3), 
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Using (5 .5 ) ,  (6 .3) ,  ( 6 . 5 )  and (6.6), the rate of vorticity shedding is found to be 
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If the values of Fn and (2  < n < N )  and rl and H are given a t  time t ,  their values 

(i) Calculation of the displacement of each vortex during the interval At. For this 
a t  t + At are calculated in three steps as follows: 

we use (5.4) and obtain, with help of (5.2), 

In calculating the contribution from the small vortex sheet with circulation rl we 
have taken its centre I& at ql = 2 / 3 H .  

(ii) Shift of the indices of the vortex. This was done as follows : 

rn, new = rn-1, prev (n = 2 , 3 ,  ...), (6.9) 

6, new = Cn-1, prev, 

where 'prev' is shorthand for previous. 

vorticity in Fl is generated at a rate dI',,,/dt, so 
(iii) Calculation of the new vortex sheet circulation rl and its height H .  The 

rl = ~ t -  dFt,t 
dt 

(6.10) 

Using (6.7) gives for H the relation 

From the Kutta condition (6.6) we finally obtain rl. 
In order to avoid an excessive growth of computation time as the calculation 

proceeds, an amalgamation process was introduced. The physical observation inspiring 
this is (see figure 13) the formation during each cycle of two spiral structures one with 
positive and one with negative vorticity. These spirals keep their identity, more or 
less, and may be represented by a single line vortex each. We chose the vortex with 
index No as amalgamation centre. This means that as a rule its index was not shifted 
but that was absorbed by it. This continues until r,,70-l changes sign, in which 
case all indices are shifted. In absorbing rNo-l the centre <.,To moves to a new location 
<,vo, new, determined in our calculation in such a way that the potential far away inside 
the tube is least affected. The region far inside the tube is mapped in the 5 plane 
(see figure 14) near 5 = 1, where the potential due to a vortex with circulation ra in 
ca is, together with its image in cu, given by 

w-- ru In - 1 - c u  +(I-[)-(---) r a  1 1 

2ni 1-c" 2ni 1 - 6  1 -c" (6.12) 
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Using this relation, the amalgamation was done such that the total circulation remains 
constant, 

FN,,, new = I",,, prev + F N ~ - ~ ,  prevy (6.13) 

and that the right-hand side terms in (6.16) remain unchanged, 

I",,newarg (l-CNo,new) = rLv0,prevarg (i-CN,,,prev) + r~,,-l,prevarg (1-6No-1,prev) 

- 1 

1 - 6.vo, prev 1 - Lv,,, prev 
- FN,, prev 1 -  - -  

1 

1 - CN,,, new 1 - CN,,, new 
~AT,,, new 

- ). (6.14) 
1 i 1 - Cive-l, prev 1 - ENo-l, prev 

+ r~,,-i, prev 

The potential w in the z plane and its derivative dw/dz given by (6.5) may with 
the help of Bernoulli's theorem be used to  calculate the pressure far inside the tube, 
z -+ - co, 6 + 1,  and far outside the tube, z -+ co, 6 --f co. Taking the difference be- 
tween these pressures and subtracting the pressure difference that would occur if 
no vortices were present, we obtain for the pressure difference due to  the presence of 
the vortex sheets 

(6.15) 

The equations (5 .2) ,  (6.6),  (6.8),  (6.9)) (6.1 1 )-( 6.14) form a set with which a numerical 
simulation of the vortex shedding from the edges can be performed. We restrict 
ourselves here to  low amplitudes of u. Then the displacement of a vortex during a 
cycle is relatively small and the vortex remains in the vicinity of the edge. This permits 
the approximation 

161 G 1. (6.16) 

Introducing this approximation enables to  scale our variables in such a way that the 
scaled variables 8, [, 2, A, G, and A@" are of unit order. The appropriate scaling is 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 
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~ I a u R E  16. Some similarity solutions. (a) a = 0, N = 14, AT = 0.1; (b )  a = 0.6, N = 14, 
AT = 0.1; ( c )  a = 1, N = 14, AT = 0.1; (d )  a = 1, N = 5, AT = 0.05; (e) a = 1, N = 10, 
AT = 0.05; (f) a = 1, N = 20,  AT = 0.05. The indicated length scale is 0.1 per division. 

(6.22) 

(6.23) 

(6.24) 

We applied the system of equations (6.22)-(6.28) first to compute a similarity solution. 
To obtain such a solution we write 

N 

.ii = fa, 5 n = P I ,  Z n  = hnf211, At =  AT, rn = g n W ,  APv = MVa, (6.25) 

where a,  P1, P2 and P3 are constants. Substituting the relations (6.25) gives for P1, p2 

Pl = g(1 +a), P2 = &(f +4a) ,  p3 = +(5a- 1 ) .  (6.26) 

This result is in agreement with the similarity solution for the vortex sheet coming 
from a flat plate given by Prandtl, see Prandtl (1961). Since eventually we want to 
compute the solution for C = -sinf, we took as starting condition the similarity 
solution for a = 1 .  The equations (6.18)-(6.24) were integrated with the substitutions 
(6.25) and (6.26) until steady values for s,, h, and M resulted. 

and P 3  

7. Results 
Tn figure 16 some results of the calculation of the similarity solution are shown. 

Unfortunately the motion became chaotic when N or AT were too large and also when 
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Y 

FIGURE 17. The evolution of the vortex sheet for No = 20. At the left the amalgamated vortex 
centres are shown. In the enlargement at the right the first No vortices are shown. The indicsted 
length scale is 1 per division. Open and closed circles indicate that the vortex strength is negative 
and positive respectively. (a) i = 26;  ( b )  t = 27;  ( c )  i = 28;  (d )  t = 29; (e) t = 30; (f) I = 31; 
(9)  t = 32. 

AT was too small. We did not try to improve on this, because our interest in the 
similarity solution mainly is to use it as a start for the calculations with 4 = - sin t. 
The results of these calculations are shown in figures 17  and 18. In  the former the 
displacement of the vortices is shown during the fifth period after the start and No = 20. 
At the left-hand side the positions of amalgamated vortices of negative strength 
(open circles) and positive strength (closed circles) are shown, whereas a t  the right- 
hand side a more detailed picture is shown of the development near the edge of the 
plate. If we compare these results with the experimental observations in figures 12 
and 13, we see that there is qualitative agreement. The diameter of the  vortex structure 
that is shed off is 0.9 whereas the scaled diameter in figure 12 is 0.73, which is about 
20 yo less. 

In  figure 18 the scaled pressure Ap,, defined in (6.21), is given as a function of 4, 
also defined in (6.21), for the case G = -sin f .  After one cycle the pressure A??, was 
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FIGURE 18. The scaled pressure AijV as a function of time for 47r < t < 8n. 

3 
/ 

-. ............. / 
-A  

I 

FIGURE 19. Near the edge of a circular pipe the flow is effectively two-dimensional and can be 
compared with the flow between parallel plates if the distance B between the plates is replaced 
by the tube radius R, as follows from a momentum balance of the fluid contained in C. 

already nearly periodic and the numerical results shown in figure 18 are during the 
third and fourth cycle for No = 20. The results are obtained for No = 5 ,  15, 17, 20. It 
follows from these results that Apt, is almost exactly in phase with C. The relation 
between A17 and 12 appears to be given by Afjv = 0.6C, or, using (6.211, 

Apu = 0*6p!2B(G/QB)Q u,? (7 .1)  

u = Qsin at. (7.2) 

the velocity at the exit being given by 

Relation (7.1) results from vortex formation and shedding near the edge of each 
of the plates in figure 14 and drawn again in figure 19, when the velocity far from the 
edges is Qsin at. Since this vortex formation takes place in a small region near the 
edge, indicated schematically in figure 19, we can apply ( 7 . 1 )  equally well to vortex 
formation and shedding a t  the edge of a cylindrical tube, provided we use the appro- 
priate velocity near its edge as a base. To find this we not,e that in the channel the 
complex conjugate velocity is, from (6.7)) 

aw 
-=-  
dz 5' (7.3) 

t In  Disselhorst (1978) a numerical factor of 0.8 is used instead of 0.6. This was based on the 
average of the results for No = 5,  15, 1 7  and 30. If we weight the results for No = 5 ,  which 
means a very small number of vortices, less heavily and let those for No = 15, 17 and 20 mainly 
determine the result, the relation (7.1) represents the computed resalts better. 
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when, far from the edges between the plates, the velocity is u in the x direction. From 
the mapping relation (5 .2 )  it  follows that near z = iB we have 

whence, in the neighbourhood of the edge of the upper plate in figure 14, 

w - w = u{;(-z))”. (7.5) 

The velocity in the x direction is, with 2 = X + i Y ,  near the edge in the channel 

U = ~ ( B / 4 n (  -X)}a .  (7.6) 

U = u{qR/4n( - X)}&,  

In analogy with (7.6) for a channel we write, for the velocity in a circular pipe in the 
vicinity of the edge, 

- X  being the distance along the pipe from the edge. In (7.7) q is a constant to be 
determined. Potential flow theory gives thak with a potential cZ& for the two- 
dimensional flow around the edge Z = 0 of a plate is associated a suction force 

(7.7) 

F = (7.8) 

(Batchelor 1967, p. 412).  Hence associated with the potential W in (7.5) is a suction 
force )pou2B per unit width of the plate. For a circular pipe a momentum balance of 
the fluid enclosed by the surface 2 indicated in figure 19 gives for the suction force 

2nRF = +pu2nR2 

or F = $pu2R. (7.9) 

Then, if the potential in the vicinity of the edge is represented, according to  (7.5) and 
(7.71, by 

w = u{$(-2))”, (7.10) 

it follows from (7.8) and (7 .9)  that c2 = uZR/n, and accordingly q = 1. Hence the 
expression for Apv valid for a pipe is obtained from (7.  I )  by replacing B by R: 

Apv = p -po = 0 . 6 ~ ~  !2R(ii/RR)$ U .  (7.11) 

This relation is the main theoretical result of the present study and provides, for high 
Strouhal numbers, a relation between the excess pressure, as caused by vortex 
formation, and the velocity at  the mouth of the pipe. 

The validity of (7.11) might be verified by measuring both p -p,, and u at the open 
end. However, a t  the low values of ii for which (7.11) may be expected to hold, pressure 
measurements are very difficult to perform. In  order to verify whether (7.11) may be 
used to predict the amplitude of standing waves, we proceeded as follows. Using the 
symbols P,, P,, and Pp introduced in (2.4), (2.6) and (2.8), representing respectively 
boundary layer dissipation, radiated acoustic power and work performed on the gas 
in the pipe by the piston, and in addition denoting the mean value of Apvu with 
Pend, the mean energy balance can be written as 

p, - P c n d  = PU+ pat. (7.12) 
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FIQURE 20. The dimensionless loss at the open end of a tube as a function of the Strouhal number 
Solid lines, theoretical results. +, L = 1.1 m; x ,  L = 1.8 m; 0, L = 3.3 m; 0 ,  L = 6-3 m. 

t 

We render P dimensionless by writing 

P = P/npoQ3R5. (7.13) 

Then, from (2.3), (2.4), (2.6), (2.8), (7.12) and (7.13), it  follows that in dimensionless 
form the energy balance reads 

(7.14) 

The quantity ( ~ p - p o ) / p o a o ~ S  was defined as Q in (2.10) in the course of the dis- 
cussion of waves in pipes with a round edge. In  that case there is a t  high Strouhal 
numbers no vortex formation a t  the mouth and consequently Pend tends to zero for 
X t  $ 1 and round edges. Indeed, the relation (2.11) is recovered from (7.14) when we 
put the right-hand side equal to zero. For all the experiments in which Q was measured 
(see figure 3) St2fend was determined by inserting Q in (7.14). The results have been 
plotted in figure 20 against St-l, both for sharp-edged and smooth-edged pipes of 
various lengths. Bearing in mind that all experimental observations apply to reso- 
nance, it follows that with each value of the pipe length L a different value of Sh and 
of K is connected. For sharp edges, however, it  appears from the results in figure 20 
that the relative influence of K and Sh is only slight. For round edges the influence is 
somewhat larger. This follows also from (7.14) because if we insert typical values 
obtained from figure 3 into (7.14) it  appears that with sharp edges the terms with 
Sh/K and with KK in (7.14) are significantly smaller than the remaining ones, whereas 
with round edges the terms on the right-hand side of (7.14) are of the same order of 
magnitude. This explains why with sharp edges the Strouhal number almost com- 
pletely determines the flow. 
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We compare the experimental results for Pend, as shown in figure 20, with the 
available theoretical predictions. For low Strouhal numbers St -g 1, 

2 
371 

St2 Pens N - St-I for the sharp edge, 

1 
3n 

St2 F e n d  N - St-' for the round edge. 

(7.15) 

(7.16) 

These relations are readily obtained from the boundary conditions for quasi-steady 
flow formulated in (2.14) and (2.15) for smooth edges and (2.16) for sharp edges, 
therein writing u = asin fit for u. These lines are drawn in figure 20. It follows that 
the experimentally obtained values for p e n d  tend to be along these lines, although 
probably in our experiments the Strouhal numbers were not small enough to fulfil 
the conditions underlying (7.15) and (7.16). 

We are in particular interested in the limit of high Strouhal numbers where we 
derived the result (7.11) for sharp edges. Using this a t  the open end of the pipe for 
the pressure difference above the ambient atmosphere in calculating the mean value 
of (p-p,)  u a t  the open end, we obtain, with a view to (7.13)) 

8 t 2 P e n d  = 0-3St-% for S t  S 1 and the sharp edge. (7.17) 

This relation is drawn also in figure 20 and it is seen that the experimental points 
are situated very close to the curve predicted by (7.17). One can conclude that down 
to St N 1 the relation (7.4)) or in dimensionless form (7.17), predicts the amplitude 
of the standing acoustic wave very well. In view of the assumptions made in the 
mathematical model, in particular the assumption [cf. (6.22)] that the vortices are 
not far from the edge, this is a surprisingly broad range of validity. Finally, for smooth 
edges we infer from the assumption that no vortex formation or separation takes 
place a t  high St,  that 

S t2Pend  -+ 0 for St + 1 and the round edge. (7.18) 

This also is very well confirmed by the experiments. 
In order to illustrate the results in another way, we have prepared from the experi- 

mental data and from the known expressions (2.4) and (2.6) for PaC and P, the figures 
21 (a, b ) ,  which represent in an overall way the relative importance of wall dissipation, 
acoustic radiation and end losses.? At the constant value 0.0031 of the quantity 
(./ao R)b (1 + (y  - l ) /Pr*) ,  these figures illustrate how an L / R  - S/R plane can be 
divided into regions where one of these mechanisms dominates. In preparing these 
plots analytic curves fitting the data in figure 20 have been used. 

8. Comparison with other work 
Relation (7.11) has been found here for a range of parameters in which vortex 

formation a t  the open end dominates. We briefly discuss some other boundary 
conditions which have been proposed in addition to those mentioned in previous 
sections. Jimenez (1973) and Seymour & Mortell (1973) assume at  the end section 
that the relation 

exists between the excess pressure and the velocity. The outcome of the analysis is 

t We are indebted to one of the referees for suggesting that we draw up such a plot. 

p - p  - - j u  (8.1) 0 -  
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that, if radiation losses as expressed by (8.1) dominate, j - Gi2 and G N a*. In experi- 
ments no support for the assumption (8.1) has been found. Nonlinear distortion has 
been found to lead to formation of shock waves (Lettau 1939; Sturtevant 1974) but 
then the energy-consuming mechanism is dissipation in the shock wave and not 
radiation. 

As a generalization of (2.16) Sturtevant & Keller (1978) subjected, in their analysis, 
the motion in an open pipe to the end condition 

p -po = - &pou2( 1 +kin)  

p - p o  = -+pou2(1+kout )  at outflow. 

Introduction of experimentally obtained data for the pressure at the piston in analytic- 
ally obtained results, gave a relation between kin and kOut, both for round and €or 
sharp edges. With round edges they found only small deviations from Bernoulli’s 
law, kjn and kout less than unity, confirming our findings for round edges. For sharp 
edges they found values for k,,, and k,,, of 3 and larger. They envisaged vortex 
generation as a possible cause for these large losses but rejected this on the basis of 
an order-of-magnitude argument leading to  a too small value, 0.2, of kOut. In this 
argument one ring vortex is supposed to be generated during the part of a cycle in 
which fluid is ejected from the open end. Between the circulation, say, and u they 
take the relation 

a t  inflow, 

(8.2) 

F - U R  (8.3) 
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FIGURE 21. Division of the 6-L plane into three regions in which wall dissipation, end losses or 
acoustic radiation is the most important mechanism at resonance; (v/a,R)fr f l  + (7- l)/Prfr) 
= 0.0031. (a) Sharp edge: ( b )  round edge. 

based on data for a flow accelerated impulsively to velocity u. From our experiments 
i t  appears that  during outflow two vortex rings rather than one are formed. Apart 
from this, it may be questioned whether (8.3) holds for periodic flow. If we employ 
the 'slug model' found to  be useful (Maxworthy 1977) in similar circumstances, then 

r = - uai, - 2 'S  (8.4) 

1 being the instantaneous length of the ejected slug of fluid. Thus we find for u = 42 sin a t  
that  

and, using this instead of ( 8 . 3 )  in the calculation by Sturtevant & Keller (1978)  in 
which the ko,,,th fraction of the ejected energy is concentrated in a vortex ring, we find 

- 
r = p y - 1 ,  (8 .5 )  

kout - 1-5St-I. (8.6) 

I n  the experimental example, used by Sturtevant & Keller, St-1 = 2.48, and kout is 
therefore, according to (8.6), much larger than 0.2. Also we can, assuming the end 
loss (2nlSZ) Pend [Pens defined in (7 .12)]  in a period of the motion to  be equal to the 
energy in a vortex ring, ask how according to  (7 .11)  ? is related to 42, We obtain 

N 

I' - QR2(@/QR)*, (8 .7)  
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which differs considerably from (8.3). The present, authors are therefore not convinced 
by the argument in Sturtevant & Keller (1978) to the effect that  end losses cannot be 
attributed to vortex formation. In  fact our present work shows that in a certain 
range of parameters the generation and rolling-up of vortex sheets does explain 
observed end losses. 

9. Conclusion 
In  this paper we have considered energy-consuming mechanisms in resonant 

oscillations in open acoustic tubes. The power loss by boundary-layer separation or 
vortex formation appears to depend strongly on the exit geometry. We have investi- 
gated in particular the case of sharp edges at  small wave amplitudes or, equivalently, 
relatively high Strouhal numbers. As visualized in figures 12 and 13 an important 
mechanism is the generation and shedding of vortices. This process has been simulated 
numerically, which leads to a prediction [equation (7.1 I)] of the pressure excess a t  the 
open end and therefore enables prediction [equation (7.17)] of the power loss. The 
agreement with experimental results turns out to be very satisfactory, both in regard 
to the power loss and also for the structure of the shed vortices. In the case of round 
edges it is found both from analysis and experiment that viscous and thermal dissi- 
pation, and to a lesser extent acoustic radiation, determine the flow a t  high Strouhal 
number. A t  large amplitudes, which means low Strouhal numbers, the amplitude can 
be fairly well predicted by adopting the model of jet formation at  outflow and sink- 
like flow a t  inflow. The experimental results show that in particular the boundary 
condition proposed in Van Wijngaarden (1968) as a result of this model, gives a good 
prediction of the power loss at  the open end. Finally it should be noted that it remains 
desirable to extend the numerical calculations to moderate amplitudes of the wave 
motion, for which the assumption 5 N t z 2  [cf. (6.22)] is no longer valid. The success 
obtained here for high Strouhal numbers with the model developed in $ 5  makes it 
likely that in that way a better prediction than (7.11) may be obtained when St-' 
is of order one and larger. 
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FIGURE 12. The flow field near the sharp edge. The exit velocity u is given by u = - 4 sin (2nt/T), 
where d = 2+ m s-l and T = 0.035 s. In  some of the pictures the hot-wire probes are visible. 
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FIGURE 13. Flow field near the sharp edge visualized by the Wollaston method; St = 21, the 
period T = 0.02 s .  The pictiires (a)-(f) are at t/T = 0, 0.25, 0.41, 0.53. 0.65 md 0.90. 
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